
Experience with Heterogenous Clock-Skew based Device
Fingerprinting

Swati Sharma
Dept. of Comp. Sc. & Engg.
Indian Institute of Technology

Delhi, India
sswati@cse.iitd.ernet.in

Alefiya Hussain
Information Sciences Institute

University of Southern
California

Los Angeles, CA, USA
hussain@isi.edu

Huzur Saran
Dept. of Comp. Sc. & Engg.
Indian Institute of Technology

Delhi, India
saran@cse.iitd.ernet.in

ABSTRACT

The goal of this research is to validate clock skew based de-
vice fingerprinting introduced in 2005 and explore the fea-
sibility of its usage and/or modification to facilitate unique
device identification across heterogenous target devices with
improved accuracy and reduced errors. Our network consists
of 212 devices that include desktops, laptops and handhelds.
We conduct a systematic evaluation of the clock-skew finger-
print stability across 3 primary dimensions namely, change
in target host environment, configuration and measurement
methodology. We also investigate parameters that affect
clock skew of a device. Our results indicate that a minimum
of 70 packets are required to achieve a stable skew estimate.
We also observe a significant difference between desktop and
handheld clock-skew behavior with the factors affecting skew
estimates being handheld power state and NTP updates.
Thus, for a moderate-size network, clock skew based finger-
prints provide a stable and conclusive means of identification
for desktops and laptops but show jumps for the handhelds.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations—Network management, Network monitoring ; C.4
[Performance of Systems]: Measurement techniques, Per-
formance attributes.

General Terms

Experimentation, Measurement, Reliability, Security

Keywords

Device fingerprinting, clock skew, ICMP, TCP timestamps.

1. INTRODUCTION
Clock skew based fingerprinting technique allows uniquely

identifying a physical device on the network. Host identifica-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
LASER ’12 July 18-19, 2012, Arlington, Virginia USA
Copyright 2012 ACM 978-1-4503-1195-3/12/07 ...$15.00.

tion today can be done at many layers of the network proto-
col stack. Traditionally, unique host identification has been
done by using the MAC addresses or static or dynamic IP
addresses. Another strategy for host identification is based
on difference in host’s response to non-standard packet types
or by extracting information from standard packet type re-
sponses. Typically, these can be broadly classified as operat-
ing system fingerprints [12], browser fingerprints [4], MAC
sequence numbers based fingerprints [6], active behavioral
fingerprints [1] and fingerprints from other identification pa-
rameters from the packet headers of the network protocol
stack [2, 3, 7, 8]. We choose to investigate unique device
identification based on clock skew fingerprints as the other
aforementioned techniques either require special hardware
for implementation or there exist trivial countermeasures to
spoof their operation [11, 5] and incorporate intolerable er-
rors into it. Clock skew based fingerprint identifies a device
based on the negligible shift in system clocks and hence, pro-
vides a more robust alternative that is complex to spoof as it
depends only on the system hardware. It is harder to spoof
rather than traditional or other alternatives. The system
time is collectively affected by the kernel standards, target
host hardware and target host configuration. Although it
is still possible to spoof this clock skew based identifica-
tion process by altering the system timestamp values, it is
a complex procedure and requires a detailed knowledge of
how the kernel interprets system time and how this system
time is reflected in the default OS generated fields in packet
headers.

Clock skew based device identification was introduced by
Kohno [8]. This technique utilized a constructive exploita-
tion of the shift in system clock, to identify devices uniquely.
Prior to this approach, Moon [9] and Paxson [10] showed
that clock skews were only a source of distortions in network
measurements and accuracy in network protocols and net-
work measurements necessitated synchronization of clocks
for all devices in the network.

Device identification and tracking has numerous applica-
tions. For instance, some of the major applications amongst
others include computer forensics and attack attribution,
monitoring active hosts in the network and intrusion detec-
tion for all these active hosts once their normal behavior has
been established.

In this paper, we validate the clock skew based device
fingerprinting approach that was presented by Kohno et.
al. [8]. We plan to achieve this goal by extensive evaluation
of the stability of clock skews in order to robustly identify

9

a wide range of desktops, laptops, and resource constrained
handheld devices in a network. The clock skew based finger-
printing approach is described in brief in the next section.
With this goal in mind, our first step in this direction was to
determine if the device fingerprint was stable and portable
across environmental conditions, device configurations and
measurement methodologies. Once this was done, it was
trivial to determine the factors which affected the target de-
vice skew estimates by eliminating the ones under which the
skew estimate was stable. We experimented with a large set
of devices including shared and private machines consisting
of desktops, laptops, netbooks, macbooks, iMacs, virtual
machines, smartphones and tablets. In this text, we do not
discuss the skew behavior of virtual machines. We tracked
these devices under a heterogenous set of contrasting condi-
tions for a period of 9 months from June 2010 to Feb 2011
in order to study their processor clock skew. All servers
and machines from four different undergraduate and gradu-
ate student computing laboratories in the computer science
department at the Indian Institute of Technology in Delhi,
India were a subset of this target device set. Several of these
machines were identified and then tracked when they first
entered the network.
The contribution of this work is a systematic evaluation of

the stability of clock skew based device fingerprint and the
factors influencing it in a heterogenous environment. Dur-
ing the nine month period, we fingerprinted and tracked
162 devices and 48 virtual machines by performing a multi-
dimensional comparison of factors influencing clock skews.
These dimensions were (a) measurement techniques, (b) tar-
get host measurement environments, and (c) target host
configurations. The deviations from Kohno’s measurement
techniques included modifications in ICMP timestamp col-
lection process, variable length measurement intervals be-
tween timestamp collections, temperature variations at tar-
get devices ranging from 104 to 140 degree fahrenheit, power
source variations from battery-backed to AC power oper-
ated, variations in operating systems on same target device,
variations in system state, device configurations, network
connectivity and vantage points while calculating the skew
estimate of a target device. The rest of the paper is orga-
nized as follows. Section 2 briefly describes the clock skew
based device identification approach and discusses how to in-
terpret the observations. Section 3 gives the detailed list of
scenarios under which the clock skew was found to be stable
and a description of their interpretations for each subcate-
gory. Finally, section 4 concludes our observations on clock
skew measurements and summarizes our findings.

2. METHODOLOGY
In this section, we first discuss some details about the

skew fingerprint technique and how this work differs from
the original version. This is followed by the definitions given
by Paxson [10] and Kohno [8] to introduce the terminology
used in this paper for describing a clock’s behavior. Sub-
sequently, we give a brief summary of skew extraction pro-
cess accompanied by a brief account of our experimentation
setup. Finally, we illustrate how to interpret the observa-
tions and extract skew values from them to identify devices.

2.1 Previous work on clock skew fingerprints
The concept of device identification introduced by Kohno

et. al., was based on exploitation of small, microscopic de-

Figure 1: Network layout of the experimental setup
illustrating multiple measurement points and a di-
verse set of target devices.

Figure 2: Illustration of batch ICMP timestamp col-
lection mode in brief.

viations in the device hardware, that is clock skews. They
remotely identified fingerprintees after analysis of 12 hour
and 24 hour trace periods. They also applied the technique
to devices in a trace collected at one of the US’s Tier 1
OC-48 links. The identification was based on accurate ex-
traction of system timestamps from the TCP and ICMP
packets for clock skew estimation. They also demonstrated
that clock skew was independent of the system hardware
by remotely fingerprinting 69 homogenously configured ma-
chines uniquely at UCSD’s undergraduate computing labo-
ratory. These fingerprintee machines were Micron PC’s with
448 MHz Pentium II processors running Microsoft Windows
XP Professional Service Pack 1. The major contribution of
their work was introduction of a new approach to enable
remote unique identification of a device on a network, out-
lining applications that could benefit from this approach in
the process. In this paper, we present a validation of this ap-
proach and a detailed analysis of factors affecting the clock
skew based identification process for hosts in a network. We
diversify our set of target devices to include heterogenous
device kinds, that is desktops - clients and servers, virtual
machines, laptops, netbooks and resource constrained mo-
bile handheld devices, as illustrated in Figure 1. We further
explore the feasibility of unique device identification in such
a network.

2.2 Terminology Used
A clock’s resolution is defined as the smallest unit of time

by which the clock time can increase. Accuracy of a clock
is how well the frequency, and hence, time can be compared
with the true time. The time represented by the clock is

10

S.No. Descriptor Values
1 Numbers 152 nodes, 48 virtual machines, 10 handhelds, 19 operating systems.
2 Devices Nodes: 91 Desktops, 20 Servers, 15 iMacs, 17 Laptops, 5 Macbooks, 4 Acer Netbooks.

Handhelds: 2 iPads, 4 Samsung Galaxy GT-I9000, 2 Nokia N8’s, 2 Dell XCD28’s.
3 Operating Systems Fedora core 10, 11, 12, freeBSD 5.2.1, Ubuntu version 8.04, 9.10,

Windows XP (SP 1, 2, 3), Windows Vista, Windows 7,
Macintosh OS X version 10.5.8, 10.6.2 and 10.6.4,

Android OS version 2.1, 2.2, Android OS x86, Symbian 3̂, iOS version 4.0.
4 Measurement Method Active ICMP based technique, Passive TCP based technique.
5 Measurement Intervals 0.1 sec, 1 sec, 1 min, 2 mins, 5 mins, 10 mins, 20 mins, 30 mins, 40 mins, 60 mins.
6 Measurement Modes Continuous ICMP, Batch ICMP, TCP.

Table 1: Experimental Configuration for clock skew measurement conducted at IIT Delhi from June 2010 to
February 2011.

called the reported time. Stability of a clock is how well can it
maintain a constant frequency at which the oscillator feeding
the motherboard circuits oscillates. The offset of a clock
is the difference between reported time and true time at
any particular moment. Thus, offset between any two given
clocks can be interpreted as the difference in the reported
times of the respective clocks. A clock’s skew is defined as
the first-order derivative of its time offset with respect to
the true time or the reported time of another clock. It can
be interpreted as the time difference between two machines
for every second of true time that elapses, and is measured
in ppm or parts per million. Thus, a skew value of 2 ppm
between two machines can be interpreted as a difference of
2 microseconds in the reported times of the corresponding
clocks, for every second that elapses. This amounts to a
difference of a few seconds in one day.
System clocks exhibit a negligible shift with time and

these shifts are characteristic of the frequency at which the
oscillator feeding the motherboard circuit oscillates. Clock
skews are, thus, an inherent property of the device that can
be used for fingerprinting both wired and wireless devices ir-
respective of the device’s hardware/software configurations
and the network conditions. We now discuss the skew esti-
mation procedure.

2.3 Clock Skew Extraction
The precision of the skew calculation lies in the accurate

extraction of system time generated by the oscillator fre-
quency. Kohno et. al. [8] showed that TCP timestamps
from the TCP header and ICMP timestamps from the ICMP
timestamp response header provide the adequate granular-
ity for this purpose. TCP timestamps were captured from
TCP communication taking place between the main server
and clients. Thus, it was a passive measurement technique
where the client initiated connection and the server just re-
sponded to it. For ICMP timestamps, the server initiated
communication in the form of ICMP Timestamp Request
messages and extracted the target machine timestamps from
ICMP Timestamp Response messages. Since, the server ini-
tiated the communication, this was an active fingerprinting
technique.
Equations 1 through 5 below explain the skew estimation

procedure. Arrival time is the time at which a packet is re-
ceived at the network measurement point, M and the target
time is the time at which a packet left the target or destina-
tion, D. For ICMP timestamps, the arrival time is extracted

from the ORIGINATE time field of the ICMP Timestamp
Request header, while the target time is extracted from the
TRANSMIT time field of the ICMP Timestamp Response
header as illustrated in Figure 2. For the TCP timestamps,
the arrival time is timestamped by M, when the packet is
captured by the NIC and the target time is extracted from
the TCP timestamp field in the TCP header.

Let t1 denote the timestamp from the first packet and ti
denote the timestamp from the ith packet at the measure-
ment point. Similarly, let T1 denote the timestamp from the
first packet and Ti denote the timestamp from the ith packet
at the target device. Let mi denote the arrival time offset,
calculated in equation 1. Likewise, let di denote the target
time offset upto the ith packet, calculated in equation 2. We
normalized the target timestamp offset, di with the target’s
Interrupt Timer Frequency, Hz. This was necessary in order
to make fair comparison of skew values across the diverse
target device set and ensure the statistical soundness of the
method. The observed clock offset between the measure-
ment point and the target clocks at the measurement point
was then calculated as the difference between these two time
offsets, as in equation 4. The observed time offset between
the two clocks is given by oi and the clock skew, si is com-
puted as the first-order derivative of this time offset value in
offset set OT.

mi = ti − t1, (1)

di = Ti − T1 (2)

ni =
di
Hz

(3)

oi = ni −mi (4)

OT = {(mi, oi)|i = 1,, |D|} . (5)

ICMP timestamps could not be recovered from the target
machines running Windows. This is because all versions of
the Windows operating system embed time from a virtual
clock rather than the system time, into the timestamp fields.
The virtual clock may or may not be related to the system
time in different variations but maintains the flawless func-
tioning of the RTT and PAWS mechanisms by preserving a

11

Figure 3: Illustration of continuous ICMP times-
tamp collection mode in brief.

notion of sequence between these random timestamp values.
Also, ICMP timestamps are disabled by default in all Win-
dows and Macintosh machines, so they have to be enabled
first, before any of these measurements can be performed.
In our measurement methodology, we simply repeated the

TCP timestamp extraction procedure outlined by Kohno
but modified the ICMP timestamp collection procedure to
achieve two variations: batch mode and continuous mode.
In the batch mode, a burst of packets is sent to the tar-
get after regular intervals of time. The measurement point
waited for the responses once the burst had been sent, in a
blocking fashion, that is sitting idle and waiting for all re-
sponses to be received. We sent a burst of 500 packets in 50
seconds at a time or 10 packets in 1 second. Once responses
to this packet burst were received, timestamp values were
extracted from the packet corresponding to the minimum
RTT (Round Trip Time), maximum RTT and a stable RTT
packet in order to inspect the network conditions and delays.
From this, the stable RTT value was used for skew calcula-
tion. On the other hand, in continuous mode, the measure-
ment point sent an ICMP timestamp request packet to the
target node at regular intervals of time. This was done in an
unblocking fashion, that is the measurement point did not
wait for a response after a request had been sent. Figures 2
and 3 illustrate this difference in the batch and the continu-
ous modes of ICMP skew extraction method. In both these
modes, we sent packets after regular intervals of time called
measurement intervals. These regular measurement inter-
vals corresponded to 0.1 sec, 1 sec, 1 min, 2 mins, 5 mins,
10 mins, 20 mins, 30 mins, 40 mins and 1 hour.
Since, TCP timestamp collection was a passive process,

as soon as the measurement point encountered 10 packets
belonging to the same host but with increasing sequence
numbers, it started capturing them. It did not wait for the
flow to finish in order to capture it completely. Rather, as
soon as the required number of packets were accumulated,
the capture terminated and the timestamp extraction pro-
cedure for skew estimation commenced. Whether the mea-
surement methodology for timestamp collection was TCP or
batch ICMP or continuous ICMP, 70 packets were used for
one skew estimate. The discussion on the significance of this
number follows in the next section.
We also demonstrated that skew estimates for target hosts

were independent of the measurement point. The measure-

Variation Range, Error Thresholds
Measurement Mode Batch : 0.1 ppm

Continuous : 0.2 ppm
Measurement Interval 0.1 s to 60 mins : 0.2 ppm
Single Capture Duration Hours to days : 0.2 ppm
Total Capture Duration June’10 to Feb’11 : 0.3 ppm

Table 2: Clock Skew stability across different inves-
tigation parameters of system timestamp collection
methodology.

ment point basically captured packets to extract timestamps
or reported target clock times and then calculated the clock
skew for all hosts in the network. Clock skew estimates for
target devices are independent of the measurement point’s
clock shift as skew is a relative quantity, relying on two ma-
chines. Thus, making one machine universal as the mea-
surement point eliminates the effect of measurement point’s
clock shift on the skews of target devices. But, if we con-
sider two measurement points L and M illustrated in Fig-
ure 1, clock skew for a target machine X was different with
respect to L than with respect to M, and this difference was
exactly the same as the clock skew of L with respect to M.
We use two measurement points to confirm this notion, de-
tails of which are presented in section 3.2.

2.4 Experimental Setup
Figure 1 illustrates the general topology for experimental

setup of our experiments. Briefly, it consists of target de-
vices and measurement points in the network with respect
to which clock skews for all the target devices were calcu-
lated. These devices were connected in a client and server
fashion with heterogenous composition of target devices, as
seen in Figure 1 and summarized in Table 1. The measure-
ment point in a network can be an access point for a wireless
network or a network controller monitoring the whole net-
work, which has visibility of all packets travelling over the
network. Measurement point ’L’ is a server machine with a
dual CPU Xeon processor, 24 GB RAM and running 32-bit
kernel version 2.6.26 of Fedora Core 8. Measurement point
’M’ is a Macbook with 2.13 GHz Intel Core 2 Duo processor,
2 GB DDR2 RAM and running Mac OS X version 10.5.8.
NTP daemon at the measurement point and target devices
was shut down several hours before the start of measurement
process. The affect of the NTP synchronization on target
clock skews was monitored by switching it on and off on the
target hosts at different time instants.

Our set of target machines included 152 desktops, 48 vir-
tual machines and 10 handheld devices. This device set
was a mix of personal and shared campus network hosts
and consisted of servers and machines in four undergradu-
ate and graduate computing laboratories in the Computer
Science and Engineering department at the Indian Institute
of Technology, Delhi, India. Targets were 91 Desktops, 20
Servers, 15 iMacs, 17 Laptops, 5 Macbooks, 4 Acer Net-
books, 2 iPad’s, 4 Samsung Galaxy GT-I9000’s, 2 Nokia
N8’s and 2 Dell XCD28’s. The operating systems running
on the target devices were Fedora core 10, 11, 12, freeBSD
5.2.1, Ubuntu version 8.04, 9.10, Windows XP (SP 1, 2,
3), Windows Vista, Windows 7, Macintosh OS X version
10.5.8, 10.6.2, 10.6.4, Android OS version 2.1, 2.2 for Sam-

12

Variation Range, Error Thresholds
Temperature Variations Network load, 95% resource

utilization : 0.1 ppm
Network Connectivity wired/wireless/edge : 0.1 ppm
Measurement Point 2 different machines : 0.2 ppm

Table 3: Clock Skew stability across different inves-
tigation parameters of target host environments.

sung Galaxy GT-I9000 Android phones, Android OS x86 for
Netbooks, Symbian 3̂ for Nokia N8 phones and iOS 4.0 for
iPad. The duration of these measurements was from June
2010 to February 2011 and during this period the measure-
ments were repeated every month. These details are sum-
marized in Table 1. All the mobile devices, that is laptops,
netbooks, smartphones and tablets were completely station-
ary during the measurement period in the experimentation
process.

2.5 Interpretation of Observations
Consistent measurements were reported for the skew val-

ues over the Internet by Kohno. So, we expected to observe
a stable skew value within an error range for every target
device. Figure 4 shows the skew behavior of a target de-
vice for a duration of approximately six hours. The x-axis
in the figure depicts the measurement point timestamps or
arrival time mi as calculated in equation 1, while the y-axis
depicts the observed offset between the target device and
the measurement point in seconds, as calculated in equation
4. Note that the x-axis does not start from 0 as the mea-
surement point was left idle for the first 38 hours with NTP
time updates switched off so that the measurement point
could achieve a notable difference in its reported time with
respect to the true time. The first-order derivative of the
time offset is the clock skew, and it is conveyed by the slope
of the line. Thus, a straight line shows a consistent slope and
hence, a stable skew value. We calculated skews for a set of
16 homogenous machines which had exactly same hardware
and software configuration. But, their skews were unique
which was demonstrated by distinct lines corresponding to
each target device, thus having a different slope and hence
a unique clock skew value.
Let us now understand the concept of error threshold. If

the clock skew value for a particular target ’X’ is 18.96 ppm
then it signifies that for every one second elapse of true time,
there is a difference of 18.96 microseconds between the clocks
of measurement point and target X. Clock skew of 18.96 ppm
with an error threshold of say 0.3 ppm can be interpreted as
the skew value falling in the range of 18.96 ppm plus/minus
0.15 ppm for all future measurements for the same target.
Once a new host was identified in the network, its skew
value was written into a database for further comparisons
facilitating host identification in a real time operation mode.
Thus, machines were identified based on their clock skew
values. The stability of clock skews under a wide range of
contrasting conditions is discussed in the next section.

3. CLOCK SKEW STABILITY
With the proliferation of mobile devices in modern net-

works, every network consists of a heterogenous mix of hosts
consisting of desktops, laptops, resource constrained net-

Figure 4: Interpretation of skew behavior from mea-
surement point and target host timestamps collected
from ICMP timestamp response packet headers for
device ID 4.

Variation Range, Error Thresholds
Power State Battery operated or not : 0.2 ppm
Operating Systems 0.1 ppm for smartphones,

0.3 ppm for desktops
Time Synchronization 0.1 ppm for handhelds
System State Reboots, sleep periods : 0.1 ppm

Table 4: Clock Skew stability across different inves-
tigation parameters of target host configuration.

books, and critically resource constrained handhelds like
smartphones and tablets. All these devices should be uniquely
identifiable irrespective of their configurations. In this sec-
tion, we share data and observations from a subset of our
target device set consisting of 42 machines and 10 handheld
devices, but the observations were universal to the entire tar-
get device set. The detailed breakup of these 52 machines
is shown in Table 5. Homogenous Configuration refers to
same hardware and software configuration for all the tar-
get devices in that device ID range. Similarly, Heterogenous
Configuration for a device ID range indicates differences in
the hardware and/or software configuration of the target
devices in that device ID range. All nodes had multiple
operating systems installed so that the effect of different
software configuration and same hardware configuration on
clock skew value could be monitored. There were machines
that were shared amongst many users in the lab, so they
ran other processes apart from entertaining the TCP and
ICMP request-response communications for skew calcula-
tions. Similarly, all the handheld devices except iPads were
shared experimental devices belonging to the laboratory. In
this section, we perform a multi-dimensional comparison of
factors to observe their effects on the clock skew behavior,
with these dimensions being (a) measurement methodolo-
gies, (b) measurement environments, and (c) target host
configurations.

3.1 Across Measurement Methodologies
In this subsection, we investigated three different varia-

tions in the timestamp collection methodologies, but there-
after, the skew calculation process remains the same. These
variations were : (1) impact of different ICMP measurement

13

Device Device Device Configuration
ID Range Quantity Type Type
1 to 4 4 Samsung Galaxy Homogenous
5 to 6 2 Nokia N8s Homogenous
7 to 8 2 Dell XCD28s Homogenous
9 to 10 2 iPads Heterogenous
11 to 21 11 Desktops Heterogenous
22 to 25 4 Laptops Heterogenous
26 to 41 16 Desktops Homogenous
42 to 47 6 iMacs Homogenous
48 to 50 3 Macbooks Heterogenous
51 to 52 2 Netbooks Homogenous

Table 5: Device identification details for the target
device subset illustrated in figure 6.

modes, (2) impact of varying measurement intervals between
consecutive packet captures, and (3) impact of single and
total capture duration. Our results indicated that the maxi-
mum error threshold observed amongst all the subcategories
was in the total capture duration spanning 9 months, and
was 0.3 ppm as shown in Table 2.

1. Across ICMP Measurement Modes: We used two
modes of ICMP measurements : batch and continuous,
comparison between them is illustrated in Figures 2
and 3. The difference in these two modes lies in how
much do they allow latencies in the underlying physi-
cal network to affect their respective skew calculations.
For instance, let us consider a regular measurement in-
terval of 1 minute after which the measurement point
sent a single packet in continuous mode and packet
bursts in batch mode, to the target device for times-
tamp extraction. Under the worst circumstances, fur-
ther assume that the packets were experiencing consid-
erable latency due to congestion in the network. The
effect of this latency can be observed in the varying
RTT values in the ICMP timestamp response packets
received from the targets. Granularity of ICMP times-
tamps is in milliseconds, so latency variation of even a
few milliseconds might result in distortion in the range
of skew values. In the continuous mode, latency in the
network might affect the consistency of the timestamp
values, that is the calculated skew might or might not
lie in the same skew range as the previous calcula-
tions because of the delay experienced by the packet
in reaching the measurement point. But, in the batch
mode, the measurement point sent a burst of packets
to the target and waited for responses. It then selected
the packet corresponding to minimum RTT, maximum
RTT and a stable RTT to get a sample of the latency
in network during that packet burst, between M and
D. The timestamp values from this packet with a sta-
ble RTT was then used for skew calculations which
resulted in a more accurate range of skew values. This
can be verified by comparing the error thresholds for
batch and continuous ICMP modes for the same set of
target devices on the network. While the maximum er-
ror threshold for the continuous mode is 0.2 ppm, the
maximum error threshold for the batch mode is 0.1
ppm, resulting from more precise skew values, sum-
marized in Table 2.

Measurement Standard Deviation Standard Deviation
Interval Device ID 2 Device ID 9
60 mins 39.3 46.27
30 mins 32.03 35.92
5 mins 27.7 30.29
1 sec 24.8 26.17

Table 6: Illustration of skew value scatter for differ-
ent measurement intervals for device ID 2 and ID
9.

2. Across Measurement Interval of Capture: Mea-
surement interval is the intervening period between
sending two consecutive packets in the continuous ICMP
mode or two consecutive bursts in the burst ICMP
mode at the measurement point. The measurement
point sat idle during this interval and the value of this
interval varies from 0.1 seconds to 60 minutes as shown
in Table 1. We observed a maximum error threshold
of 0.2 ppm in the skew values for any particular de-
vice when regular measurement intervals of 0.1 sec, 1
sec, 1 min, 2 mins, 5 mins, 10 mins, 20 mins, 30 mins,
40 mins and 60 mins were inserted in between packet
captures as explained above. We also observed that
with an increasing value of the measurement interval
between the consecutive packet captures, the scatter
of skew values in the same range changed. This can
be observed from the standard deviation of the skew
values for each of these measurement intervals. Ob-
servations from a sample data set for an iPad and a
Galaxy smartphone are shown in Table 6 where the
device ID’s are from Table 5. As the length of the in-
terval increases from 1 sec to 60 mins, the standard
deviation of the skew values also increases, thus illus-
trating a wider scatter of skew value points for a larger
measurement interval.

3. Across Capture Duration for Single Skew Esti-
mate: The packet capture duration for a single ICMP
skew estimate was variable and was dependent on the
measurement interval between consecutive packets sent
from the measurement point, M. For instance, if a set
of 100 timestamps is used for one skew estimate of the
target device, the capture duration can be 100 min-
utes corresponding to 1 minute measurement intervals
or 100 hours corresponding to 1 hour measurement in-
tervals. On the other hand, for TCP measurements,
the same set of 100 timestamps was yielded in only a
few minutes of data capture depending on the network
load.

Now, a single skew estimate can be computed by a vari-
able number of system timestamps. This calculation
can be done from as few as 10 timestamps and from
as large as 100 timestamps. The only difference in the
two scenarios is the level of accuracy achieved and the
precision of the calculated skew value. This is shown
in figure 5 by illustrating data from a Samsung Galaxy
GT-9000 smartphone. In both these subfigures, x-axis
denotes the number of packets used for skew calcula-
tions and the y-axis denotes the skew estimate or the
error threshold, respectively. We observed that in or-
der to achieve a stable, accurate clock skew value and

14

a low error threshold, more number of timestamped
packets must be taken into consideration. This re-
quires a longer data capture duration and hence, more
overheads will be incurred to identify a device in a real
time application. On the other hand, if lesser number
of packets are used for the clock skew estimation com-
paratively, then the value of error threshold will be
high. This affects the skew accuracy at the measure-
ment point adversely, and the number of false positives
increase as more skew values lie in the same range due
to larger error thresholds.

In figure 5, when only 10 packets were used for the
skew estimate, the error threshold was 0.08 ppm with
fluctuating skew values. But as soon as the number
of timestamps utilized for the skew estimate were in-
creased to 40, the error threshold reduced to 0.04 ppm.
And when the number packets was 70 or more, the
error threshold was reduced to its minimum value of
0.001 ppm. We thus conclude that although skew cal-
culation can be done from as few as 10 timestamp val-
ues, a minimum number of 70 system timestamps is
required for the skew estimate to become stable re-
sulting in minimum error threshold.

4. Across Total Data Capture Duration: The mea-
surements were repeated every month from June’10 to
Feb’11 to investigate the stability of the clock skew
with respect to time. The data collection for all de-
vices was distributed uniformly over the 30 day period
so as to put enough packet load on the network and at
the same time not to cause excessive computation de-
lays on the measurement point due to extra network
load and CPU load. The maximum error threshold
observed in the skew calculations for the described de-
vice subset over the 9 month duration was 0.3 ppm as
summarized in Table 2.

3.2 Across Target Device Environments
In this subsection, we discuss the different environments

to which the target device is subjected to for the duration of
timestamp collection process. We investigated three distinct
variations in the target device environment to monitor their
effect on clock skew behavior : (1) impact of temperature
variations in target device caused due to system overloads,
(2) impact of network connectivities, and (3) target device
clock skew dependence on the measurement point. Our re-
sults indicated that the maximum error threshold observed
amongst all these subcategories was when skews were calcu-
lated with respect to different measurement points, and was
0.2 ppm as summarized in Table 3.

1. Across Temperature Variation: The clock skew
based fingerprinting technique derives its unique di-
agnostic behavior from the oscillator that powers the
clock. But, oscillator operation is affected by the op-
erating temperature of the device. Thus, the clock
frequency and hence the precision of the fingerprint-
ing technique in an air conditioned indoor environ-
ment should not be the same as that in a hot environ-
ment. Our analogy of this temperature variation for
a hot environment in the wired machines was created
by the processor operating under full load with more
than 95% CPU utilization under heavy network loads,

Figure 5: Error Threshold and Skew Estimate vari-
ation with respect to number of packets utilized for
skew computation.

thereby increasing the average operating temperature
for the oscillator in the motherboard that seeds the
system time. Under this subcategory, we did repeated
measurements under stable temperature, stable load
environment and temperature varying, maximum load
environment. This load behavior of the devices was
confirmed by continuous monitoring of the device by
the resource manager. The conditions of heavy net-
work load were created by a mixup of large file down-
loads, ICMP communication, bursts of web traffic in
the devices and additional online activity of various
apps in the handheld devices. The conditions of heavy
CPU utilization were created by running heavy com-
putation based scripts in infinite loops along with mul-
tiple processes, in order to achieve a CPU utilization
of 95% or more and a heavy memory utilization. This
brought about clearly observable changes in the tem-
perature of the device and hence in the working tem-
perature of the oscillator. We observed a maximum
error threshold of 0.1 ppm due to variation in skew
values caused by temperature changes in all target de-
vices. We can summarize the temperature variations
by stating that the skew value was stable in the de-
vice operation range. We plan to explore more in this
direction by observing the effect of more drastic tem-
perature changes on the target device clock skews.

2. Across Network Connectivities: In order to be
able to uniquely identify machines on a network, the
skew calculation should be resistant to link fluctua-
tions/delays in the network and type of network con-
nectivity. This concern was addressed partially in the
methodology for batch mode in the first measurement
scenario discussed in section 3.1. We repeated our ex-
periments to measure clock skew when the same device
was connected to the measurement point with wired
or wireless connectivity for the desktops, laptops and
netbooks and with wifi or edge connectivity for the
smartphones. We observed a negligible maximum er-

15

Device Skew Error Skew Error
ID (at L) (at. L) (at M) (at M)
2 -19.75 0.1 64.63 0.1
4 -16.08 0.1 68.3 0.1
8 -28.49 0.2 55.97 0.2
9 -4.82 0.2 79.55 0.2

Table 7: Illustration of dependence of skew behavior
on measurement points.

ror threshold of 0.1 ppm because of the above men-
tioned changes in the network connectivity.

3. Across Reference Measurement Points: Measure-
ments for all the investigation parameters were re-
peated for two measurement points on the network, L
and M, illustrated in Figure 1. These machines had a
global network view and access to all the packets being
transported in the network. Of these two measurement
points, one was a server machine with ample memory
and computation resources, while the other was a nor-
mal laptop running processes solely for the purpose of
skew calculations. The skew values for all target de-
vices were stable across both the measurement points,
but their mathematical value was different for both as
expected. The rationale behind this being that skew is
the first order derivative of the time offset between two
machines. So, when one of the machines that is mea-
surement point changes, the skew value is bound to
change. And this change is exactly equal to the skew
between the two measurement points L and M. This is
illustrated in Table 7 where the device ID’s are from
Table 5 and the skew estimates and error thresholds
are reported in ppm. The skew between measurement
points ’L’ and ’M’ was found to be -84.4 ppm. The
table clearly illustrates that the difference in the skew
values for any particular target device is exactly the
skew value between the two measurement points. The
maximum error threshold in these skew calculations
was found out to be 0.2 ppm.

3.3 Across Target Device Configurations
In this subsection, we discuss the variations in the hard-

ware and software configurations at the target device. We
investigated the effect of four distinct configuration param-
eters on the clock skew behavior: (1) variations in target
device power state that is battery-run or AC power backed,
(2) variations in the operating systems of the target hosts,
(3) impact of presence of time synchronization, and (4) vari-
ations in the system state, that is sleep periods and sys-
tem reboots. Our results indicated that the maximum error
threshold observed amongst all these subcategories was with
the variations in operating systems. This threshold was 0.3
ppm for the desktops, laptops and netbooks and 0.1 ppm for
the resource constrained handheld devices, as summarized in
Table 4.

1. Across Power State: This investigation parame-
ter leads to two contrasting situations, battery backed
and AC power backed operation. Smartphones and
tablets are resource constrained devices in terms of
CPU, memory, etc and contain optimizations in their

Device AC AC Battery Battery
ID Skew Error Skew Error
2 -19.75 0.1 -18.7 0.1
4 -16.08 0.1 -15.23 0.1
8 -28.49 0.2 -27.57 0.2
9 -4.82 0.2 -3.90 0.2

Table 8: Illustration of dependence of skew behavior
on the power state of handhelds.

Device ID Android OS 2.1 Android OS 2.2
2 -19.75 -19.76
4 -16.08 -16.14

Table 9: Illustration of dependence of skew behavior
on target device operating systems.

operating systems for conserving these resources for
optimal usage. It was interesting to observe changes
in the clock skew values when the device under con-
sideration was operating on a battery as opposed to
being connected to an AC power supply. We also ob-
served a variation in the sleep schedules and activity
monitoring on these resource constrained devices when
they were operating on AC power as opposed to when
they were not. Some of the data for these repeated
measurements is shown in Table 8 where the device
ID’s are from Table 5 and the skew estimates and er-
ror thresholds are reported in ppm. We observed a
maximum error threshold of 0.2 ppm in the clock skew
values for each of these measurements for all devices.
Further, we observed a difference of about 1 ppm in the
clock skew values when the device was operating un-
der these contrasting circumstances. We are currently
investigating the possible causes for this observation.

2. Across Operating Systems and/or different ker-
nel versions: To illustrate the effect of this investiga-
tion parameter on desktops and other laptops, we in-
stalled multiple operating systems and different kernel
versions of the same operating system on the devices.
For the smartphone counterparts, we upgraded the op-
erating systems to change the kernel version of the An-
droid OS. Since, skew is characteristic of the oscillator,
we expected to see stable clock skews across these envi-
ronments for the same device. We present the observed
data for two Samsung Galaxy smartphones in Table 9
where the device ID’s are from Table 5. All the skew
estimates are in ppm and the error thresholds for all
these devices were 0.1 ppm. These devices had ex-
actly same hardware and software configurations and
possess unmistakably different skew values. Also, vari-
ations in the operating system versions did not bring
about much change in the skew values or the error
threshold. To recapitulate, error threshold is the range
in which the data points are scattered above and be-
low the calculated skew value for a particular target
device. We observed an error threshold of 0.1 ppm
for the handhelds and 0.3 ppm for the desktops and
laptops under this scenario.

3. Across Time Synchronization on the Mobile De-

16

vice: The presence of time synchronization daemon in
a machine synchronizes the system clock to another
time server in the network at regular intervals of time.
Ideally, this behavior should bring distortions in the
skew estimates. In this experiment category, skew
measurement for all the target devices was carried out
in the presence of and absence of time synchronization.
The observed skew behavior for desktops and laptops
was exactly as expected. ICMP timestamp values were
garbled due to frequent NTP updates at the measure-
ment point and the target device, thus, disturbing the
skew calculations. TCP timestamps on the other hand
were not affected by the NTP updates. But, we ob-
served that the presence of time synchronization on
the handheld devices did not affect the precision of
skew values or their error thresholds. We found the
maximum error threshold in this case to be 0.1 ppm.

4. Across System Reboots and Sleep Periods: Ide-
ally, the system clock must be consistent for stable
clock skews and must not be affected by sleep peri-
ods or system reboots. We found that the mecha-
nism of dealing with sleep periods is very different in
desktops and laptops as compared to the resource con-
strained handheld devices and wrote applications for
Android OS in Samsung Galaxy, Dell XCD and Sym-
bian OS in Nokia N8 smartphones. These applications
made sure that packet capture rates for skew calcu-
lations were not compromised and at the same time,
limited resources possessed by these devices were also
not wasted. In this experiment category, we repeated
the clock skew measurements such that system times-
tamps were collected before and after target device
sleep periods and reboots. The apps that we built for
smartphones made sure that these sleep periods were
of 2 types : (1) uniform and regular, and (2) increas-
ing from a small value like 5 mins to a large one like
5 hours. We found that the maximum error threshold
for the skew calculations was 0.1 ppm.

4. DEVICE TRACKING SENSITIVITY
Our observations from the variations in the timestamp

collection methodology, target device environment and con-
figurations showed us that the clock skew values were sta-
ble within a small error threshold. But, the error threshold
varies for each investigation parameter as summarized in Ta-
bles 2 through 4. Fluctuating error thresholds impact the
ability of the measurement point to accurately identify tar-
get devices in the network. Let us establish this statement
with our target device subset of 52 machines. Figure 6 illus-
trates the scatter plot for the skew values of all the machines
in this subset when 70 or more packets have been used for
the ICMP skew estimation process. The x-axis denotes the
device identifications and the y-axis denotes the ICMP skew
estimates. Table 5 provides a detailed description of these
machines based on device ID’s from x-axis in the figure.
Larger is this value of error threshold, more is the proba-

bility of multiple target devices from a heterogenous testbed
falling in the same skew value range. This leads to collisions
or false positives in device identification in that particular
skew range. For instance, from Figure 6, we observe that the
skew values of device 43 and 44 are very close. If the error
threshold is large enough to encompass both these values,

Figure 6: Scatter plot for illustration of skew esti-
mates with respect to the device identifications.

then the aforementioned collision occurs in identification of
these devices. But, with a smaller error threshold value,
these 2 devices will still belong to different skew ranges, and
hence be uniquely identifiable.

While dealing with variations in the timestamp collection
methodology, we observed that the minimum error thresh-
old was associated with the batch ICMP collection mode
with a value of 0.1 ppm and the maximum error thresh-
old was associated with skew calculations across the total
data capture duration with a value of 0.3 ppm. This can be
interpreted as follows. Sensitivity in the clock skew based
device identification with respect to batch ICMP mode is
the maximum, with least false positive rate. The number
of false positives in the technique increased as we changed
our methodology to continuous ICMP mode, with an error
threshold of 0.2 ppm and it increased further with an in-
crement in the capture duration, accompanied by an error
threshold of 0.3 ppm. Similarly, for variations in the target
device environment, the maximum sensitivity and the least
number of false positives corresponded to the temperature
variations and variations in the network connectivity with
an error threshold of 0.1 ppm. But, with a change in the
measurement points, the false positive rate increased with
an increase in error threshold value to 0.2 ppm.

The clock skew values for our target device set were uni-
formly random. Figure 6 just depicts a subset of target
devices and is for the understanding of the readers rather
than for illustration of the uniform random behavior of the
clock skew value for the complete target device set. Let us
now quantify these sensitivity values in terms of number of
devices. Temperature variations in the target device pro-
cessor caused an error threshold of 0.1 ppm while operating
system variations caused an error threshold of 0.3 ppm in
the desktops. Here ppm stands for parts per million, so 0.1
ppm corresponds to 1 part in 10 million parts. Also, let us
assume that each skew range is a unique bin which should
ideally contain just one device for unique identification. This
means that if the error threshold is 0.1 ppm, then for more
than one device to fall in the same bin, the total number
of devices in the network must be atleast 10 million. On
the other hand, if the error threshold is 0.3 ppm, then for

17

more than one device to fall in the same bin, the minimum
number of devices in the network reduces to 3 million. Hav-
ing said this, in our network, if the error threshold was 0.1
ppm or 0.2 ppm then we were able to accurately identify
all 162 machines. But when the error threshold increased
to 0.3 ppm, we could only identify 159 devices out of the
original 162, for reasons just explained. The process fol-
lowed was capturing packets, dividing them into IP based
bins, extracting timestamps and then evaluating the clock
skew from timestamps in each bin. This resulted in very few
collisions in a medium size network such as ours consisting
of 162 distinct hosts and 2 measurement points. But if the
size of the network increases, there may exist an intersection
in the clock skew ranges of the target devices owing to the
uniform random distribution of skew values, thus resulting
in possibly ambiguous device resolution.
We therefore conclude that clock skew based device iden-

tification works well for a moderate size network based on
our empirical validation of the technique. We found the
target device skew to be stable across variations in measure-
ment methodologies, target host configurations and target
host environments for desktops, laptops and netbooks. The
only factors affecting the skew values were duration of cap-
ture and power state and operating system variations at the
target host.
Future Work and Limitations: We are currently ex-

ploring the factors affecting clock skew in more detail along
with the effect of drastic ambient temperature changes on
the target device clock skew and the reason for the 1 ppm
skew jump with change in the handheld power source. There
do exist countermeasures that an adversary can take to es-
cape unique identification, by tampering with the timestamp
values inserted in ICMP and TCP packets or by playing
with the factors mentioned above that affect the clock skew
estimate. The only possibility to thwart such a countermea-
sure is to club the clock skew based fingerprint with another
parameter and combine their results to provide unique iden-
tification. One of the major limitations of this work is the
absence of hypothesis testing and statistical analysis for all
the investigation parameters. We are currently looking into
this.

5. CONCLUSION
In this paper, we presented an extensive systematic evalu-

ation of the stability of clock skew based device fingerprint-
ing technique in a moderate size and heterogenous device
network. Specifically, we explored the feasibility of device
identification on a network comprised of 152 desktops and
laptops, 48 virtual machines, and 10 handheld devices. We
demonstrated that to achieve an error-free and stable clock
skew estimate at least 70 timestamped packets must be cap-
tured from a target device. The introduction of batch ICMP
mode helped improve the accuracy of the skew estimation al-
gorithm and reduced the maximum observed error threshold
to 0.3 ppm. We evaluated the clock-skew across measure-
ment methodologies, target device environments and target
device configurations. Our findings indicate that the skew
estimate is affected by power state of handhelds, regular
NTP updates in desktops, and the capture duration. As
the scale of the network increases and the number of skew
samples reduce, other techniques may need to be combined
with those evaluated in the paper to conclusively distinguish
between devices on the network.

6. REFERENCES
[1] S. Bratus, C. Cornelius, D. Kotz, and D. Peebles.

Active behavioral fingerprinting of wireless devices. In
Proceedings of the First ACM Conference on Wireless
Network Security, WiSec ’08, pages 56–61, New York,
NY, USA, 2008.

[2] V. Brik, S. Banerjee, M. Gruteser, and S. Oh. Wireless
device identification with radiometric signatures. In
Proceedings of the 14th ACM International Conference
on Mobile Computing and Networking, MobiCom ’08,
pages 116–127, New York, NY, USA, 2008.

[3] L. C. C. Desmond, C. C. Yuan, T. C. Pheng, and
R. S. Lee. Identifying unique devices through wireless
fingerprinting. In Proceedings of the first ACM
Conference on Wireless Network Security, WiSec ’08,
pages 46–55, New York, NY, USA, 2008.

[4] P. Eckersley. How unique is your web browser? In
Proceedings of the 10th International Conference on
Privacy Enhancing Technologies, PETS’10, pages
1–18, Berlin, Heidelberg, 2010. Springer-Verlag.

[5] F. Gont. ICMP Attacks against TCP. RFC 5927
(Informational), July 2010.

[6] F. Guo and T. Chiueh. Sequence number-based MAC
address spoof detection. In Proceedings of the 8th
International Conference on Recent Advances in
Intrusion Detection, RAID’05, pages 309–329, Berlin,
Heidelberg, 2006.

[7] J. Hall, M. Barbeau, and E. Kranakis. Enhancing
intrusion detection in wireless networks using radio
frequency fingerprinting. In Proceedings of the 3rd
IASTED International Conference on
Communications, Internet and Information
Technology (CIIT), pages 201–206, 2004.

[8] T. Kohno, A. Broido, and K. C. Claffy. Remote
Physical Device Fingerprinting. IEEE Transactions on
Dependable Security Computing, 2(2):93–108, Apr.
2005.

[9] S. Moon, P. Skelly, and D. Towsley. Estimation and
removal of clock skew from network delay
measurements. In Proceedings of Eighteenth Annual
Joint Conference of the IEEE Computer and
Communications Societies., volume 1 of
INFOCOM’99, pages 227–234, 1999.

[10] V. Paxson. On calibrating measurements of packet
transit times. In Proceedings of the 1998 ACM
SIGMETRICS Joint International Conference on
Measurement and Modeling of Computer Systems,
SIGMETRICS ’98/PERFORMANCE ’98, pages
11–21, New York, NY, USA, 1998. ACM.

[11] M. Smart, G. R. Malan, and F. Jahanian. Defeating
TCP/IP stack fingerprinting. In Proceedings of the 9th
conference on USENIX Security Symposium - Volume
9, SSYM’00, pages 17–17, Berkeley, CA, USA, 2000.
USENIX Association.

[12] G. Taleck. Ambiguity resolution via passive OS
fingerprinting. In Recent Advances in Intrusion
Detection, pages 2003, ISSU 2820, 192–206. Springer,
2003.

18

